客服热线:0755-86016222
工作时间:08:30-18:00
优管网
发布: 2019/04/08
作者:优管网
来源:
物联网的快速发展让我们进入了后云时代,在我们的日常生活中会产生大量的数据。物联网应用可能会要求极快的响应时间,数据的私密性等等。 如果把物联网产生的数据传输给云计算中心,将会加大网络负载,网路可能造成拥堵,并且会有一定的数据处理延时。 随着物联网和云服务的推动,我们假设了一种新的处理问题的模型,边缘计算,在网络的边缘产生、处理、分析数据。
什么是边缘计算?
虽然边缘并不是一个新的计算概念,近年来它已经成为在智能制造领域中加快数字化转型扮演关键角色的最便捷的解决方案。边缘计算有助于制造商将由机器生成的大量数据集转化为具有洞察力和可操作性的数据。它通过利用连接到网络的资源(如温度传感器、报警器或电机驱动器)来实现。这使得大数据分析能够在数据源中进行。
“边缘”是指距离数据源最近的计算基础设施,例如机器人手臂和自动化重型机械。这些被认为是在“边缘”,因为它们往往离计算基础设施的中心最远,而这在云端是可用的。
在未来的智能交通应用环境中,“云计算”就相当于智能设备的大脑,处理相对复杂的进程;而“边缘计算”就相当于智能设备的神经末梢,进行一些“下意识”的反应。
“边缘计算”的六大特点
云服务的推动:云中心具有强大的处理性能,能够处理海量的数据。但是,将海量的数据传送到云中心成了一个难题。
云计算模型的系统性能瓶颈在于网络带宽的有限性,传送海量数据需要一定的时间,云中心处理数据也需要一定的时间,这就会加大请求响应时间,用户体验极差。
物联网的推动:现在几乎所有的电子设备都可以连接到互联网,这些电子设备会后产生海量的数据。
传统的云计算模型并不能及时有效的处理这些数据,在边缘结点处理这些数据将会带来极小的响应时间、减轻网络负载、保证用户数据的私密性。
终端设备的角色转变:终端设备大部分时间都在扮演数据消费者的角色,比如使用智能手机观看爱奇艺、刷抖音等。
然而,现在智能手机让终端设备也有了生产数据的能力,比如在淘宝购买东西,在百度里搜索内容这些都是终端节点产生的数据。
虽然边缘计算还没有全面爆发,但是从现在涌动的暗流中,我们已然可以看到,边缘计算呈现出的六大特点和趋势。
第一,去中心化
边缘计算从行业的本质和定义上来看,就是让网络、计算、存储、应用从“中心”向边缘分发,以就近提供智能边缘服务。
第二,非寡头化
边缘计算是互联网、移动互联网、物联网、工业互联网、电子、AI、IT、云计算、硬件设备、运营商等诸多领域的“十字入口”,一方面参与的各类厂商众多,另一方面“去中心化”在产品逻辑底层,就一定程度上通向了“非寡头化”。
第三,万物边缘化
边缘计算和早年的IT、互联网,如今的云计算、移动互联网,以及未来的人工智能一样,具备普遍性和普适性。在万物互联的未来,有万物互联就有应用场景,有应用场景就要边缘计算。
第四,安全化
在边缘计算出现之前,用户的大部分数据都要上传至数据中心,在这一上传的过程中,用户的数据尤其是隐私数据,比如个体标签数据、银行账户密码、电商平台消费数据、搜索记录、甚至智能摄像头等等,就存在着泄露的风险。而边缘计算因为很多情况下,不要再把数据上传到数据中心,而是在边缘近端就可以处理,因此也从源头有效解除了类似的风险。
第五,实时化
随着工业互联网、自动驾驶、智能家居、智能交通、智慧城市等各种场景的日益普及,这些场景下的应用对计算、网络传输、用户交互等的速度和效率要求也越来越高。
第六,绿色化
数据是在近端处理,因此在网络传输、中心运算、中心存储、回传等各个环节,都能节省大量的服务器、带宽、电量乃至物理空间等诸多成本,从而实现低成本化、绿色化。
“边缘计算”在智能交通领域的应用
华为实践
深圳交警借助华为FusionServer高性能边缘计算服务器,搜集实时交通数据,将交通信息存储、过滤、处理后,传回到华为开发的交通大数据平台,准确的提供“移动对象时空引擎”和“实时交通出行量计算”的信息,依据拥堵区域、道路和位置点等多维度数据实时拥堵分析(深圳交警5亿数据秒级分析),再将智能分析后的结果传到边缘侧,实现信号调优从被动采集到主动感知,从局部优化到宏观规划,从而利用有效地制定信号配时策略,交通诱导设置和对流量来源地的疏导指挥等策略,整体提升交通管制效率。
通过信号调优方案,深圳市高峰期局部重点路段持续时间预期可减少15%,深圳大梅沙、龙华等部分重点路段运行速度提高9%,利用边缘计算能力实时监测反馈,实现深圳交通的智能管控。
边缘计算在智能交通领域的挑战
边缘计算为智能交通系统带来了机遇的同时,它目前的发展也遇到了些许困难。
第一,边缘计算设备常常要面临高温、高寒、高湿等复杂环境,如何在这样的环境下保持设备的长久运行是一个非常重要的问题。
第二,边缘计算设备的缓存及运算能力是根据其任务有选择进行的,这就需要厂家对它们进行“量身定制”。
最后,边缘计算设备要应用在交通系统的各个环节,涉及的厂家众多,如何统一这些这设备的生产标准,这有待于在智能交通领域一些重要企业牵头制定标准。
边缘计算是否会替代云计算
边缘计算是否会替代云计算一直是一个讨论的热点问题。
边缘计算作为5G时代的一项关键技术,未来将成为不可或缺的基础设施之一。
5G提供了高可靠低延时的通信能力,如果5G加上边缘计算的时延与能耗都优于云端计算的成本,就可以优先边缘计算的方式。
此外,边缘计算可能给未来的计算系统结构带来巨大革命。5G时代终端算力上移、云端算力下沉,将在边缘形成算力融合。
边缘计算并不会取代云计算,更恰当的说法是,边缘计算是云计算的补充。目前二者融合的趋势越来越明显,将在未来相互配合,共同提升计算效率。
免责声明:本文内容源于网络,仅供参考,不代表本网观点;如涉及版权问题,请及时与我们联系。